# Potent and Selective Fluoroketone Inhibitors of Group VIA Calcium-Independent Phospholipase A2

George Kokotos,<sup>\*,†</sup> Yuan-Hao Hsu,<sup>‡</sup> John E. Burke,<sup>‡</sup> Constantinos Baskakis,<sup>†</sup> Christoforos G. Kokotos,<sup>†</sup> Victoria Magrioti,<sup>†</sup> and Edward A. Dennis<sup>\*,‡</sup>

<sup>†</sup>Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Athens 15771, Greece, and <sup>‡</sup>Department of Chemistry and Biochemistry and Department of Pharmacology, School of Medicine, MC 0601, University of California, San Diego, La Jolla, California 92093-0601

### Received December 19, 2009

Group VIA calcium-independent phospholipase  $A_2$  (GVIA iPLA<sub>2</sub>) has recently emerged as a novel pharmaceutical target. We have now explored the structure–activity relationship between fluoroke-tones and GVIA iPLA<sub>2</sub> inhibition. The presence of a naphthyl group proved to be of paramount importance. 1,1,1-Trifluoro-6-(naphthalen-2-yl)hexan-2-one (FKGK18) is the most potent inhibitor of GVIA iPLA<sub>2</sub> ( $X_I(50) = 0.0002$ ) ever reported. Being 195 and > 455 times more potent for GVIA iPLA<sub>2</sub> than for GIVA cPLA<sub>2</sub> and GV sPLA<sub>2</sub>, respectively, makes it a valuable tool to explore the role of GVIA iPLA<sub>2</sub> in cells and in vivo models. 1,1,1,2,2,3,3-Heptafluoro-8-(naphthalene-2-yl)octan-4-one inhibited GVIA iPLA<sub>2</sub> with a  $X_I(50)$  value of 0.001 while inhibiting the other intracellular GIVA cPLA<sub>2</sub> and GV sPLA<sub>2</sub> at least 90 times less potently. Hexa- and octafluoro ketones were also found to be potent inhibitors of GVIA iPLA<sub>2</sub>; however, they are not selective.

#### Introduction

The phospholipase  $A_2$  (PLA<sub>2</sub>) superfamily consists of many different groups of enzymes that catalyze the hydrolysis of the ester bond at the sn-2 position of various phospholipids.<sup>1</sup> The products of the hydrolysis are a free fatty acid and a lysophospholipid, both of which may generate second messengers that play important physiological roles. The PLA<sub>2</sub> superfamily currently contains 15 separate, identifiable groups and various subgroups.<sup>2,3</sup> The three predominant types of PLA<sub>2</sub> found in human tissues are the cytosolic (such as the GIVA  $cPLA_2^{a}$ ), the secreted (such as the GIIA and GV sPLA<sub>2</sub>), and the calcium-independent (such as the GVIA iPLA<sub>2</sub>) enzymes. GIVA cPLA<sub>2</sub> is generally considered a proinflammatory enzyme that is the rate-limiting provider of arachidonic acid and lysophospholipids.<sup>4</sup> In many cases, the activity of secreted  $PLA_2$  has been shown to be dependent on or linked to the activity of GIVA cPLA<sub>2</sub>.<sup>5-7</sup> The calcium-independent group VIA iPLA<sub>2</sub> (GVIA iPLA<sub>2</sub>), typically referred to in the literature as iPLA<sub>2</sub>, is actually a group of cytosolic enzymes ranging

from 85 to 88 kDa and expressed as several distinct splice variants of the same gene.<sup>8</sup> GVIA iPLA<sub>2</sub> has long been proposed as a homeostatic enzyme involved in basal metabolism within the cell.<sup>9–15</sup> However, a number of studies suggest that GVIA iPLA<sub>2</sub> also plays important roles in numerous cell types, although they may differ from cell to cell. Recent review articles discuss the role of GVIA iPLA<sub>2</sub> in signaling and pathological conditions (for example, cancer and ischemia).<sup>16–20</sup>

The GVIA iPLA<sub>2</sub> enzyme contains a consensus lipase motif, Gly-Thr-Ser\*-Thr-Gly, with the catalytic serine confirmed by site-directed mutagenesis.<sup>8,21</sup> Both of the intracellular enzymes GIVA cPLA2 and GVIA iPLA2 share the same catalytic mechanism utilizing a serine residue as the nucleophile. The various inhibitor classes of both enzymes are summarized in a recent review article.<sup>22</sup> Arachidonyl trifluoromethyl ketone has been shown to function as a tight binding, reversible inhibitor of both GIVA and GVIA PLA2,<sup>23,24</sup> while methylarachidonyl fluorophosphonate functions as an irreversible inhibitor of both enzymes.<sup>25</sup> Bromoenol lactone (BEL) (1, Figure 1) has previously been considered to be a selective and irreversible GVIA iPLA2 inhibitor and has been widely applied to study potential biological roles for GVIA iPLA<sub>2</sub>.<sup>11,26</sup> Turk et al. have recently studied the inactivation mechanism of GVIA iPLA<sub>2</sub> by **1** (BEL),<sup>27</sup> and they concluded that it is likely that this inhibitor affects multiple enzymes and should be used with appropriate caution when studying potential roles of GVIA iPLA2. Our laboratories have previously reported on the development of 2-oxoamide inhibitors targeting GIVA cPLA<sub>2</sub>.<sup>28-32</sup> We have demonstrated that 2-oxoamides containing a free carboxyl group are selective inhibitors of GIVA cPLA2, and most recently we have determined the location of such an inhibitor bound in the active site of GIVA cPLA<sub>2</sub> using a combination of deuterium exchange

<sup>\*</sup>To whom correspondence should be addressed. For G.K.: (phone) (30210) 7274462; (fax) (30210) 7274761; (e-mail) gkokotos@ chem.uoa.gr. For E.A.D.: (phone) 858-534-3055; (fax) 858-534-7390; (e-mail) edennis@ucsd.edu.

<sup>&</sup>lt;sup>*a*</sup> Abbreviations: ATP, adenosine triphosphate; BEL, bromoenol lactone, BSA, bovine serum albumin; DAST, diethylaminosulfur trifluoride; DMAP, 4-dimethylaminopyridine; DPPC, 1,2-dipalmitoylphosphatidylcholine; DTT, dithiothreitol; EtOAc, ethyl acetate; GIVA cPLA<sub>2</sub>, group IVA cytosolic phospholipase A<sub>2</sub>; GV sPLA<sub>2</sub>, group V secreted phospholipase A<sub>2</sub>; GVIA iPLA<sub>2</sub>, group VIA calcium-independent phospholipase A<sub>2</sub>; HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; NMM, *N*-methylmorpholine; PAPC, 1-palmitoyl-2-arachidonylphosphatidylcholine; PIP<sub>2</sub>, phosphatidylinositol (4,5)-bisphosphate; TBAF, tetra-*n*butylammonium fluoride; TFA, trifluoroacetic acid; THF, tetrahydrofuran; TLC, thin-layer chromatography; Tris, tris(hydroxymethyl)aminomethane; TMS, tetramethylsilane; WSC1·HCl, *N*-(3-dimethylaminopropyl)-*N'*-ethylcarbodiimide hydrochloride.



Figure 1. Some known inhibitors of GVIA iPLA<sub>2</sub>.

mass spectrometry and molecular dynamics.<sup>33</sup> 2-Oxoamides based on amino acid esters show cross-reactivity for both GIVA cPLA<sub>2</sub> and GVIA iPLA<sub>2</sub>,<sup>30,32</sup> while most recently we identified a 2-oxoamide based on a pseudodipeptide that preferentially inhibits GVIA iPLA<sub>2</sub>.<sup>34</sup>

The development of selective inhibitors for the three main human PLA<sub>2</sub> enzymes is an important goal, and we have synthesized and assayed a variety of polyfluoroketones for their activity on GIVA cPLA<sub>2</sub>, GVIA iPLA<sub>2</sub>, and GV sPLA<sub>2</sub>. We previously found that 1,1,1,2,2-pentafluoro-7-phenylheptan-3-one (FKGK11)<sup>35</sup> (2, Figure 1) is a selective inhibitor of GVIA iPLA<sub>2</sub>.<sup>36</sup> Trifluoromethyl ketone 3 (FKGK2, Figure 1) can be considered to be a pan inhibitor of all three enzymes: GIVA cPLA<sub>2</sub>, GVIA iPLA<sub>2</sub>, and GV sPLA<sub>2</sub>. The tetrafluoro derivative 4 was found to be the most potent GVIA iPLA<sub>2</sub> inhibitor, although it is not selective.<sup>36</sup> The selective GVIA iPLA2 inhibitor 2 was successfully used to study the role of this enzyme in neurological disorders such as peripheral nerve injury and multiple sclerosis.<sup>37,38</sup> We successfully demonstrated that inhibitor 2 causes a beneficial therapeutic effect in experimental autoimmune encephalomyelitis,<sup>38</sup> the animal model of multiple sclerosis. This indicates that GVIA iPLA<sub>2</sub> is a novel target for the development of new therapies for multiple sclerosis. The recently emerged important pharmaceutical significance of GVIA iPLA2 and the lack of potent and selective GVIA iPLA<sub>2</sub> inhibitors prompted us to extend our studies toward the discovery of such inhibitors. In this work, we report the synthesis of a variety of new fluoroketones and the study of their selectivity on the three main human phospholipase A<sub>2</sub> compounds.

### **Design and Synthesis of Polyfluoroketones**

The rationale behind our design of polyfluoroketones was based on the hypothesis that the introduction of more than three fluorine atoms adjacent to a carbonyl group may increase either the carbonyl reactivity or the inhibitor binding affinity to the target enzyme.<sup>36</sup> This hypothesis was confirmed, and in fact, such a design led to the selective GVIA iPLA<sub>2</sub> inhibitor **2** (pentafluoroethyl ketone) and the tetrafluoro derivative **4**, which is a potent GVIA iPLA<sub>2</sub> inhibitor, although it is not a selective inhibitor. In the present work, our aim was to extend the structure—activity relationship studies on the potency and the selectivity of heptafluoropropyl ketones and analogues of the lead GVIA iPLA<sub>2</sub> inhibitors **2**, **3**, and **4**.

For the synthesis of heptafluoropropyl ketones, carboxylic acids **5a**,**b** were converted to chlorides by treatment with oxalyl chloride and then to the target compounds **6a**,**b** using heptafluorobutanoic anhydride and pyridine (Scheme 1). Wadsworth–Horner–Emmons reaction of benzaldehyde

Scheme 1<sup>a</sup>



<sup>*a*</sup> Reagents and conditions: (a) (i) (COCl)<sub>2</sub>, CH<sub>2</sub>Cl<sub>2</sub>; (ii) (C<sub>3</sub>F<sub>7</sub>CO)<sub>2</sub>O, pyridine, CH<sub>2</sub>Cl<sub>2</sub>.

Scheme 2<sup>*a*</sup>



<sup>*a*</sup>Reagents and conditions: (a)  $C_2H_3OOCCH=CHCH_2P(=O)-(OC_2H_3)_2$ , LiOH, THF; (b) NaOH, 1,4-dioxane; (c) DMAP, NMM, WSCI+HCl, CH\_3ONHCH\_3+HCl, CH\_2Cl\_2; (d) CF\_3CF\_2I, CH\_3Li+LiBr, Et<sub>2</sub>O.

(7) with triethyl phosphonocrotonate,<sup>39</sup> followed by saponification, led to unsaturated acid **8** (Scheme 2). We previously showed that  $\alpha,\beta$ -unsaturated acids may be converted into pentafluoroethyl ketones by treatment of the corresponding Weinreb amide with (pentafluoroethyl)lithium.<sup>40</sup> Following this procedure, the Weinreb amide **9** was converted to the unsaturated pentafluoroethyl ketone **10**.

Various trifluoromethyl, pentafluoroethyl, and heptafluoropropyl ketones 12a-i were synthesized as depicted in Scheme 3. Reaction of furfural (13) with triethyl phosphonocrotonate, followed by hydrogenation and saponification, produced acid 11b. However, treatment of this acid with oxalyl chloride, followed by  $(C_2F_5CO)_2O$  and pyridine, led to the formylated derivative 12b. Under these conditions we were unable to prepare the nonformylated derivative.

The synthesis of tetrafluoro derivatives **18a**,**b** was accomplished by procedures developed earlier<sup>36</sup> (Scheme 4). On the basis of <sup>1</sup>H and <sup>19</sup>F NMR data, tetrafluoro derivatives **18a**,**b** appear to be a mixture of ketone–hydrate form.

Fluoroketones 19-25 (for structures, see Table 1), which were used in the in vitro assays, were prepared as described previously.<sup>40</sup>

# In Vitro Inhibition of GVIA iPLA<sub>2</sub>, GIVA cPLA<sub>2</sub>, and GV sPLA<sub>2</sub>

All synthesized inhibitors were tested for inhibition of human GVIA iPLA<sub>2</sub> based on a modification of the previously described mixed micelle-based assay.<sup>30</sup> The mixed micelle assay employed herein used 1-palmitoyl-2-arachidonylphosphatidylcholine (PAPC) as substrate, and the specific conditions employed herein were somewhat different from those employed in the previous mixed micelle assay which employed 1,2-dipalmitoylphosphatidylcholine (DPPC) as substrate. This change was made in order to use the same substrate for iPLA<sub>2</sub> as for cPLA<sub>2</sub>, to better compare the specificities of both iPLA<sub>2</sub> and cPLA<sub>2</sub> toward the same substrate. This also improved the consistency of the standard

Scheme 3<sup>*a*</sup>



<sup>*a*</sup> Reagents and conditions: (a) (i) (COCl)<sub>2</sub>, CH<sub>2</sub>Cl<sub>2</sub>; (ii) (CF<sub>3</sub>CO)<sub>2</sub>O or (C<sub>2</sub>F<sub>5</sub>CO)<sub>2</sub>O or (C<sub>3</sub>F<sub>7</sub>CO)<sub>2</sub>O, pyridine, CH<sub>2</sub>Cl<sub>2</sub>; (b) C<sub>2</sub>H<sub>5</sub>OOCC-H=CHCH<sub>2</sub>P(=O)(OC<sub>2</sub>H<sub>3</sub>)<sub>2</sub>, LiOH, THF; (c) H<sub>2</sub>, 10% Pd/C; (d) NaOH, CH<sub>3</sub>OH; (e) Br(CH<sub>2</sub>)<sub>3</sub>COOEt, K<sub>2</sub>CO<sub>3</sub>, acetone.

Scheme 4<sup>a</sup>



<sup>*a*</sup> Reagents and conditions: (a) DAST, CH<sub>2</sub>Cl<sub>2</sub> or (CH<sub>3</sub>OCH<sub>2</sub>CH<sub>2</sub>)<sub>2</sub>-NSF<sub>3</sub>, CH<sub>2</sub>Cl<sub>2</sub>; (b) (i) (CH<sub>3</sub>)<sub>3</sub>SiCF<sub>3</sub>, CsF, CH<sub>3</sub>OCH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub> or (CH<sub>3</sub>)<sub>3</sub>SiCF<sub>3</sub>, TBAF, toluene; (ii) conc HCl or TBAF, CH<sub>3</sub>COOH, THF.

error in the assay. By use of this more refined assay, a  $X_{\rm I}(50) = 0.0014$  was determined for the lead inhibitor **2**, lower than that determined previously (0.0073).<sup>36</sup> To test the selectivity of the synthesized inhibitors toward GIVA cPLA<sub>2</sub>

and GV sPLA<sub>2</sub>, the previously reported mixed micelle-based assays were used.<sup>28,29,31</sup> The resulting values of GVIA iPLA<sub>2</sub> inhibition are presented in Figure 2 as either percent inhibition or  $X_{I}(50)$  values. Initially, the percent of inhibition for each PLA<sub>2</sub> enzyme at 0.091 mol fraction of each inhibitor was determined, and  $X_{I}(50)$  values were determined for all compounds toward GVIA iPLA<sub>2</sub> and for the other two enzymes for all inhibitors that displayed greater than 90% inhibition. However, for two additional iPLA<sub>2</sub> inhibitor examples, we also determined their  $X_{I}(50)$  toward cPLA<sub>2</sub> in order to calculate their relative specificities. The  $X_{I}(50)$  is the mole fraction of the inhibitor in the total substrate interface required to inhibit the enzyme by 50%. The inhibition results for all three enzymes are summarized in Table 1.

The replacement of the pentafluoroethyl group of inhibitor **2** ( $X_{I}(50) = 0.0014$ ) by the heptafluoropropyl group led to inhibitor **6a** ( $X_{I}(50) = 0.0022$ ), which resulted in a slightly decreased potency of the GVIA iPLA<sub>2</sub> inhibition. Extension of the carbon chain by one carbon atom produced inhibitor **6b**, which also resulted in a slightly decreased potency ( $X_{I}(50) = 0.0030$ ). Compounds **19** and **20**, which carry a hydroxyl group instead of the carbonyl group of inhibitors **2** and **6a**, were surprisingly found to be inhibitors of GVIA iPLA<sub>2</sub>, although they were not potent. They were also weak inhibitors of the other two PLA<sub>2</sub> compounds.

We observed that the insertion of two unsaturated bonds, while keeping the distance between the phenyl and the activated carbonyl group constant, significantly reduced the inhibitory activity of **10** by 22 times. When the carbon atom next to the phenyl group of **2** was replaced by oxygen, compound **12a** was 2.5 times less potent than inhibitor **2**. At the same time, we found that inhibitor **12a** is selective for GVIA iPLA<sub>2</sub>, since a high mole fraction of the inhibitor (0.091) does not inhibit either GIVA cPLA<sub>2</sub> or GV sPLA<sub>2</sub> at all. The furan-based inhibitor **12b** was not a potent inhibitor.

Pentafluoroethyl derivative **21** based on the oleyl chain inhibited GVIA iPLA<sub>2</sub> better than the corresponding palmitoyl derivative.<sup>36</sup> Heptafluoropropyl derivative **22** was a weaker inhibitor of GVIA iPLA<sub>2</sub> than derivative **21**. Both **21** and **22** were able to inhibit weakly the other two enzymes. These data indicate that for the inhibition of GVIA iPLA<sub>2</sub> a chain bearing an aromatic ring rather than a long aliphatic saturated or unsaturated chain has to be attached to the activated carbonyl. Reducing the distance between the phenyl and the carbonyl group and inserting a trans double bond led to compound **23**, which inhibits GVIA iPLA<sub>2</sub> with  $X_{I}(50) =$ 0.0066. This derivative does not inhibit at all the other intracellular enzyme GIVA cPLA<sub>2</sub> and inhibits weakly GV sPLA<sub>2</sub> (77%) at 0.091 mol fraction.

Both the *p*-hexyloxy substituted pentafluoroethyl and heptafluoropropyl derivatives **12c** and **12d** inhibited GVIA iPLA<sub>2</sub> with  $X_{I}(50)$  of 0.0084 and 0.0136, respectively. Comparing **12c** and **12d** with **2** and **6a**, it seems that the *p*-hexyloxy substitution had a negative effect on the GVIA iPLA<sub>2</sub> inhibition. Interestingly, when the oxygen atom was moved between the aromatic group and the carbonyl next to the phenyl group, both the trifluoromethyl and the pentafluoroethyl derivatives **12e** and **12f** strongly inhibited GVIA iPLA<sub>2</sub> ( $X_{I}(50)$  of 0.0029 and 0.0024, respectively). However, all the derivatives bearing a substituent at the para position failed to be selective for any PLA<sub>2</sub> enzyme.

The replacement of the phenyl group of inhibitor **2** by a naphthyl group led to excellent results. 1,1,1-Trifluoro-6-(naphthalen-2-yl)hexan-2-one (FKGK18, **12g**)<sup>35</sup> proved to

| No  | Structure                                                               | GVIA iPLA <sub>2</sub> |                     | GIVA cPLA <sub>2</sub> |                     | GV<br>sPLA <sub>2</sub> |     |                                                             | GVIA iPLA2      |                     | GIVA cPLA <sub>2</sub> |                     | GV<br>sPLA <sub>2</sub> |
|-----|-------------------------------------------------------------------------|------------------------|---------------------|------------------------|---------------------|-------------------------|-----|-------------------------------------------------------------|-----------------|---------------------|------------------------|---------------------|-------------------------|
|     |                                                                         | %<br>Inhibition        | X <sub>1</sub> (50) | %<br>Inhibition        | X <sub>1</sub> (50) | %<br>Inhibition         | No  | Structure                                                   | %<br>Inhibition | X <sub>1</sub> (50) | %<br>Inhibition        | X <sub>1</sub> (50) | %<br>Inhibition         |
| 2   | C <sub>2</sub> F <sub>5</sub>                                           | 99.4 ± 0.1             | 0.0014 ± 0.0001     | N.D.                   |                     | 28 ± 1                  | 12c | 0<br>C <sub>2</sub> F <sub>5</sub>                          | 98.3 ± 0.2      | 0.0084±<br>0.0006   | 76.1 ± 1.8             |                     | 71.7 ± 3.6              |
| 6a  | C <sub>3</sub> F <sub>7</sub>                                           | 99.4 ± 0.0             | 0.0022 ± 0.0001     | 32.6 ± 4.0             |                     | $61.8 \pm 6.7$          | 12d | ↔ <sup>5</sup> <sub>0</sub> , C <sub>3</sub> F <sub>7</sub> | 95.8±1.3        | 0.0136±<br>0.0006   | 43.7 ± 3.2             |                     | 76.9±2.2                |
| 6b  | 0<br>C <sub>3</sub> F <sub>7</sub>                                      | 98.4 ± 0.3             | 0.0030 ± 0.0002     | N.D.                   |                     | N. D.                   | 12e | CF3                                                         | 99.4 ± 0.1      | 0.0029 ±<br>0.0001  | 91.5 ± 0.9             | 0.022 ± 0.001       | 61.4 ± 5.3              |
| 19  | C <sub>2</sub> F <sub>5</sub>                                           | 94.3 ± 1.5             | 0.0390 ± 0.0024     | 44.8 ± 3.7             |                     | 67.3 ± 7.7              | 12f | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                      | 99.4 ± 0.1      | 0.0024 ± 0.0001     | 88.8±0.7               |                     | 63.0 ± 6.2              |
| 20  | OH<br>C <sub>3</sub> F <sub>7</sub>                                     | 97.0 ± 1.3             | 0.0258±<br>0.0016   | 82.0 ± 1.2             |                     | 65.8 ± 1.8              | 12g | CF3                                                         | 99.9 ± 0.1      | $0.0002 \pm 0.0000$ | 80.8 ± 1.5             |                     | 36.8 ± 7.9              |
| 10  | C <sub>2</sub> F <sub>5</sub>                                           | 96.0 ± 0.8             | 0.0313 ± 0.0025     | 59.0 ± 3.6             |                     | N. D.                   | 12h | C <sub>2</sub> F <sub>5</sub>                               | 99.8 ± 0.0      | 0.0006 ± 0.0000     | 77.1 ± 1.8             |                     | 58.4 ± 5.7              |
| 12a | 0,0<br>C <sub>2</sub> F <sub>5</sub>                                    | 99.1 ± 0.5             | 0.0036±<br>0.0001   | N. D.                  |                     | N. D.                   | 12i | C <sub>3</sub> F <sub>7</sub>                               | 99.7 ± 0.2      | 0.0010 ± 0.0001     | 55.8 ± 2.1             |                     | 46.3 ± 10.0             |
| 12b | H C <sub>2</sub> F <sub>5</sub>                                         | 84.4 ± 2.1             | 0.0262 ± 0.0006     | N. D.                  |                     | 41.9 ± 4.4              | 18a | CF <sub>3</sub>                                             | 97.6 ± 0.2      | $0.0025 \pm 0.0001$ | 52.1 ± 2.2             |                     | N. D.                   |
| 21  | 0<br>()7<br>()7<br>()7<br>()7<br>()7<br>()7<br>()7<br>()7<br>()7<br>()7 | 95.5 ± 0.4             | 0.0192 ± 0.0007     | 41.4 ± 3.4             |                     | 67.0 ± 6.4              | 18b | CF3                                                         | 98.8±0.2        | 0.0013 ± 0.0000     | 66.0 ± 3.7             |                     | N. D.                   |
| 22  | U7 C3F7                                                                 | 80.6 ± 2.5             | 0.0574 ± 0.0030     | 57.0 ± 1.9             |                     | 33.9±<br>18.4           |     | F                                                           | 100 - 0.1       | 0.0005 ±            | (0.4 + 1.5             |                     | 39.1±                   |
| 23  | C <sub>2</sub> F <sub>5</sub>                                           | 96.4 ± 0.6             | 0.0066 ± 0.0005     | N. D.                  |                     | 76.9 ± 5.3              | 24  | F C <sub>2</sub> F <sub>5</sub>                             | 100 ± 0.1       | 0.0000              | 08.4 ± 1.5             |                     | 12.6                    |
|     | ×                                                                       |                        |                     |                        |                     |                         | 25  | F C <sub>3</sub> F <sub>7</sub>                             | 100.0 ± 0.1     | 0.0005 ± 0.0000     | 79.9 ± 1.0             |                     | 36.1 ± 8.2              |

<sup>*a*</sup> Average percent inhibition and standard error (n = 3) are reported for each compound at 0.091 mol fraction.  $X_{I}(50)$  values were determined for inhibitors with greater than 90% inhibition. N.D. signifies compounds with less than 25% inhibition (or no detectable inhibition).

be a very potent inhibitor of GVIA iPLA<sub>2</sub> ( $X_{I}(50) = 0.0002$ ), exhibiting 7 times higher inhibition than inhibitor **2**. Compound **12g** also inhibited GIVA cPLA<sub>2</sub> but at a significant lower level, so we determined its  $X_{I}(50)$  which was  $0.039 \pm$ 0.001. It is 195 times more potent on GVIA iPLA<sub>2</sub> than on GIVA cPLA<sub>2</sub>. It was also a very weak inhibitor of GV sPLA<sub>2</sub> (37% at 0.091 mol fraction), which implies that it is >455 times selective for iPLA<sub>2</sub>. Both pentafluoroethyl and heptafluoropropyl derivatives **12h** and **12i** were potent inhibitors of GVIA iPLA<sub>2</sub> ( $X_{I}(50)$  of 0.0006 and 0.0010, respectively). However, both **12h** and **12i** inhibited weakly GIVA cPLA<sub>2</sub> and GV sPLA<sub>2</sub>. The dose response curves for the inhibition of GVIA iPLA<sub>2</sub> by **12g** and **12i** are presented in Figure 3.

Both the tetrafluoro derivatives **18a** and **18b** were potent inhibitors of GVIA iPLA<sub>2</sub> ( $X_{I}(50)$  of 0.0025 and 0.0013, respectively). 1,1,1,2,2,4-Hexafluoro-7-phenylheptan-3-one **24** (FKGK21)<sup>35</sup> and 1,1,1,2,2,3,3,5-octafluoro-7-phenyloctan-4-one **25** (FKGK22)<sup>35</sup> were even more potent inhibitors of GVIA iPLA<sub>2</sub> ( $X_{I}(50) = 0.0005$  for both). Comparing **24** and **25** with **2** and **6a**, we observe that the insertion of an additional fluorine atom at the  $\alpha'$  position of either the pentafluoroethyl or

the heptafluoropropyl ketone results in improved inhibitory potency. However, none of the tetra-, hexa-, and octafluoro derivatives proved selective.

The chemical mapping of the GVIA iPLA<sub>2</sub> active site through structure-activity studies, carried out in the present and the previous work,<sup>36</sup> allowed us to understand some of its features, although no crystal structure has been reported. The enzyme-inhibitor complex is likely to be stabilized by an "oxyanion hole" and other features shown in Figure 4. Although long saturated or unsaturated chains may be bound by the enzyme, the presence of an aromatic ring facilitates inhibitor-enzyme binding. The aromatic system, preferably an extended one such as the naphthyl moiety, may be accommodated in an enzyme binding pocket able to create aromaticaromatic interactions. The aromatic system should have a distance from the carbonyl group corresponding to a fourcarbon chain. We propose that the fluorine atoms, apart from their role in increasing the carbonyl reactivity, may contribute to additional interactions of the inhibitor with a "fluorophilic" region of the enzyme. The perfluoroalkyl chain may interact with a "fluorophilic" binding site through a variety of bonds involving fluorine. Recently, it has become clear that



**Figure 2.** GVIA iPLA<sub>2</sub> % inhibition at 0.091 mol fraction of inhibitor in mixed micelles (top) and  $X_{I}(50)$  values (bottom). Standard error (n = 3) for average % inhibition and for  $X_{I}(50)$  values for all synthesized compounds is indicated.



**Figure 3.** Dose-response curves for GVIA iPLA<sub>2</sub> inhibition by inhibitors **12g** and **12i**. Inhibition of the activity of human GVIA iPLA<sub>2</sub> was tested on mixed micelles containing 100  $\mu$ M PAPC and 400  $\mu$ M Triton X-100. Inhibition curves were generated using Graphpad Prism with a nonlinear regression targeted at symmetrical sigmoidal curves based on plots of % inhibition versus log(inhibitor concentration). The reported  $X_1(50)$  values were calculated from the resultant plots.



Figure 4. Model for the binding mode of fluoroketone inhibitors in the active-site crevice of GVIA iPLA<sub>2</sub>.

fluorine may enhance binding efficacy and selectivity in pharmaceuticals because of a variety of multipolar C-F···H-N, C-F···C=O, and C-F···H-C<sub> $\alpha$ </sub> interactions between a fluorinated ligand and protein binding sites.<sup>41,42</sup> The "fluorophilic" binding site of GIVA iPLA<sub>2</sub>

should be large enough to accommodate even a heptafluoropropyl group.

In the present study, we identified five fluoroketones (12g, 12h, 12i, 24, and 25) that are more potent inhibitors of GVIA iPLA<sub>2</sub> than the lead inhibitor 2, which has been successfully used in animal models of neurological disorders.<sup>37,38</sup> The introduction of one fluorine atom at the  $\alpha'$  position of a pentafluoroethyl or a heptafluoropropyl ketone (compounds 24 and 25) significantly increased the inhibitory potency for GVIA iPLA<sub>2</sub>. We therefore determined the  $X_{I}(50)$  for cPLA<sub>2</sub> which was  $0.038 \pm 0.002$ . Inhibitor 25 is 76 times and > 180 times more potent for GVIA iPLA<sub>2</sub> than for GIVA cPLA<sub>2</sub> and GV sPLA<sub>2</sub>, respectively. Inhibitor 12a is also of interest because it inhibits GVIA iPLA<sub>2</sub> ( $X_{I}(50) = 0.0036$ ) without affecting at all GIVA cPLA<sub>2</sub> and GV sPLA<sub>2</sub>. The presence of a naphthyl group proved to be of paramount importance. Trifluoromethyl ketone 12g is the most potent inhibitor of GVIA iPLA<sub>2</sub> ( $X_{I}(50) = 0.0002$ ) ever reported. Being 195 and > 455 times more potent for GVIA iPLA<sub>2</sub> than for GIVA cPLA<sub>2</sub> and sPLA<sub>2</sub>, respectively, makes it a valuable tool for ex vivo and in vivo studies.

In conclusion, we developed new, very potent inhibitors of the calcium-independent GVIA iPLA<sub>2</sub>. Some of them present interesting selectivity over the intracellular GIVA cPLA<sub>2</sub> and the secreted GV sPLA<sub>2</sub>. By application of these inhibitors as tools for studies in animal models, the role of GVIA iPLA<sub>2</sub> in various inflammatory diseases may be explored. Since it has become clear that GVIA iPLA<sub>2</sub> is a novel target for the development of novel therapies, fluoroketone inhibitors may become leads for the development of novel medicines, in particular for complex neurological disorders such as multiple sclerosis.

#### **Experimental Section**

Synthesis of Fluoroketone Inhibitors. Melting points were determined on a Buchi 530 apparatus and are uncorrected. Nuclear magnetic resonance spectra were obtained on a Varian Mercury spectrometer (<sup>1</sup>H NMR recorded at 200 MHz, <sup>13</sup>C NMR recorded at 50 MHz, <sup>19</sup>F NMR recorded at 188 MHz) and are referenced in ppm relative to TMS for <sup>1</sup>H NMR and <sup>13</sup>C NMR and relative to TFA as an internal standard for <sup>19</sup>F NMR. Thin layer chromatography (TLC) plates (silica gel 60  $F_{254}$ ) and silica gel 60 (230–400 mesh) for flash column chromatography were purchased from Merck. Visualization of spots was effected with UV light and/or phosphomolybdic acid, in EtOH stain. Tetrahydrofuran, toluene, and Et<sub>2</sub>O were dried by standard procedures and stored over molecular sieves or Na. All other solvents and chemicals were reagent grade and used without further purification. All tested compounds possessed  $\geq 95\%$ purity as determined by combustion analysis. Intermediates 11a and **11e** were prepared by known methods, <sup>43,44</sup> and its spectroscopic data were in accordance with those in the literature.

General Procedure for the Synthesis of Heptafluoropropyl Ketones. Oxalyl chloride (0.38 g, 3 mmol) and N,N-dimethylformamide (40  $\mu$ L) were added to a solution of carboxylic acid (1 mmol) in dry dichloromethane (40 mL). After the mixture was stirred for 3 h at room temperature, the solvent and excess reagent were evaporated under reduced pressure and the residue was dissolved in dry dichloromethane (10 mL). Pyridine (0.64 mL, 8 mmol) and heptafluorobutanoic anhydride (1.5 mL, 6 mmol) were added dropwise to this solution at 0 °C consecutively. After being stirred at 0 °C for 30 min and at room temperature for 1.5 h, the reaction mixture was cooled again at 0 °C and water (2 mL) was added dropwise. After being stirred for 30 min at 0 °C and another 30 min at room temperature, the reaction mixture was diluted with dichloromethane (10 mL). The organic phase was then washed with brine and dried (Na<sub>2</sub>SO<sub>4</sub>). The solvent was evaporated under reduced pressure, and the residual oil was purified by flash column chromatography [EtOAc-petroleum ether (bp 40-60 °C), 5/95].

**1,1,2,2,3,3-Heptafluoro-8-phenyloctan-4-one** (6a).<sup>40</sup> Yield 59%; yellowish oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  7.32–7.15 (5H, m, Ph), 2.77 (2H, t, J = 6.2 Hz, CH<sub>2</sub>), 2.65 (2H, t, J = 6.6 Hz, CH<sub>2</sub>), 1.71–1.59 (4H, m, 2 × CH<sub>2</sub>). <sup>13</sup>C NMR:  $\delta$  194.0 (t,  $J_{C-CF2} = 26$  Hz, CO), 141.6 (Ph), 130.0–103.5 (m, 2 × CF<sub>2</sub>, CF<sub>3</sub>), 128.4 (Ph), 128.3 (Ph), 125.9 (Ph), 37.7 (CH<sub>2</sub>), 35.4 (CH<sub>2</sub>), 30.3 (CH<sub>2</sub>), 21.9 (CH<sub>2</sub>). <sup>19</sup>F NMR:  $\delta$  –9.4 (CF<sub>3</sub>), –49.9 (CF<sub>2</sub>), –55.4 (CF<sub>2</sub>). MS (ESI) m/z (%): 329 [(M – H)<sup>-</sup>, 100].

**1,1,2,2,3,3-Heptafluoro-9-phenylnonan-4-one** (**6b**). Yield 76%; yellowish oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  7.38–7.15 (5H, m, Ph), 2.74 (2H, t, J = 6.2 Hz, CH<sub>2</sub>), 2.63 (2H, t, J = 6.6 Hz, CH<sub>2</sub>), 1.78–1.60 (4H, m, 2 × CH<sub>2</sub>), 1.42–1.35 (2H, m, CH<sub>2</sub>). <sup>13</sup>C NMR:  $\delta$  194.4 (t,  $J_{C-CF2} = 26$  Hz, CO), 142.4 (Ph), 130.2–103.5 (m, 2 × CF<sub>2</sub>, CF<sub>3</sub>), 128.6 (Ph), 128.5 (Ph), 126.4 (Ph), 38.1 (CH<sub>2</sub>), 35.9 (CH<sub>2</sub>), 31.3 (CH<sub>2</sub>), 29.9 (CH<sub>2</sub>), 22.5 (CH<sub>2</sub>). <sup>19</sup>F NMR:  $\delta$  –9.4 (CF<sub>3</sub>), –49.9 (CF<sub>2</sub>), –55.4 (CF<sub>2</sub>). MS (ESI) m/z (%): 343 [(M - H)<sup>-</sup>, 100]. Anal. (C<sub>15</sub>H<sub>15</sub>F<sub>7</sub>O) C, H.

**1,1,2,2,3,3-Heptafluoro-8-(4-hexyloxyphenyl)octan-4-one (12d).** Yield 62%; yellowish oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  7.05 (2H, d, J = 8.2 Hz, Ph), 6.87 (2H, d, J = 8.2 Hz, Ph), 3.91 (2H, t, J = 6.6 Hz, OCH<sub>2</sub>), 2.74 (2H, t, J = 7.7 Hz, CH<sub>2</sub>), 2.56 (2H, t, J = 7.7 Hz, CH<sub>2</sub>), 1.78–1.22 (12H, m,  $6 \times$  CH<sub>2</sub>), 0.88 (3H, t, J = 6.2 Hz, CH<sub>3</sub>). <sup>13</sup>C NMR:  $\delta$  194.2 (t,  $J_{C-C-F}$  = 26.0 Hz, CO), 157.6 (Ph), 132.0 (Ph), 130.2–103.5 (m,  $2 \times$  CF<sub>2</sub>, CF<sub>3</sub>), 129.1 (Ph), 114.5 (Ph), 68.0 (CH<sub>2</sub>O), 38.0 (CH<sub>2</sub>), 34.8 (CH<sub>2</sub>), 31.8 (CH<sub>2</sub>), 30.8 (CH<sub>2</sub>), 29.5 (CH<sub>2</sub>), 25.9 (CH<sub>2</sub>), 22.8 (CH<sub>2</sub>), 22.1 (CH<sub>2</sub>), 14.3 (CH<sub>3</sub>). <sup>19</sup>F NMR:  $\delta$  –9.4 (CF<sub>3</sub>), -49.9 (CF<sub>2</sub>), -55.4 (CF<sub>2</sub>). Anal. (C<sub>20</sub>H<sub>25</sub>F<sub>7</sub>O<sub>2</sub>) C, H.

**1,1,2,2,3,3-Heptafluoro-8-(naphthalen-2-yl)octan-4-one** (**12i**). Yield 45%; yellowish oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  7.90–7.20 (7H, m, Ph), 2.85–2.70 (4H, m, 2 × CH<sub>2</sub>), 1.85–1.70 (4H, m, 2 × CH<sub>2</sub>). <sup>13</sup>C NMR:  $\delta$  194.2 (t,  $J_{C-CF2} = 26$  Hz, CO), 139.3 (Ph), 133.8 (Ph), 132.3 (Ph), 128.4 (Ph), 127.9 (Ph), 127.7 (Ph), 127.4 (Ph), 126.7 (Ph), 126.2 (Ph), 125.9 (Ph), 125.0–102.0 (m, CF<sub>3</sub>, 2 × CF<sub>2</sub>), 37.7 (CH<sub>2</sub>), 35.6 (CH<sub>2</sub>), 30.2 (CH<sub>2</sub>), 22.0 (CH<sub>2</sub>). <sup>19</sup>F NMR:  $\delta$  –8.8 (CF<sub>3</sub>), –50.0 (CF<sub>2</sub>), –55.5 (CF<sub>2</sub>). MS (ESI) m/z (%): 379 [(M – H)<sup>-</sup>, 100]. Anal. (C<sub>18</sub>H<sub>15</sub>F<sub>7</sub>O) C, H.

(2E,4E)-N-Methoxy-N-methyl-5-phenylpenta-2,4-dienamide (9).<sup>45</sup> To a stirred solution of carboxylic acid (175 mg, 1 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (7 mL) were added DMAP (122 mg, 1 mmol), N, O-dimethylhydroxyamine hydrochloride (98 mg, 1 mmol), NMM (0.11 mL, 1 mmol), and WSCI·HCl (192 mg, 1 mmol) consecutively at room temperature. The reaction mixture was left stirring for 18 h. It was then washed with an aqueous solution of 1 N HCl ( $3 \times 10$  mL), brine ( $1 \times 10$  mL), an aqueous solution of 5% NaHCO<sub>3</sub> ( $3 \times 10$  mL), and brine ( $1 \times 10$  mL). The organic layer was dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated under reduced pressure. The amide was purified by flash chromatography, eluting with the appropriate mixture of EtOAc-petroleum ether (40-60 °C), 1/9, to afford the desired product. Yield 67%; white solid. <sup>1</sup>H NMR (CDCl<sub>3</sub>): δ 7.55-7.20 (6H, m, Ph, CH), 6.90-6.80 (2H, m, 2 × CH), 6.57 (1H, d, J = 15 Hz, CH), 3.70 (3H, s, CH<sub>3</sub>O), 3.25 (3H, s, CH<sub>3</sub>). <sup>13</sup>C NMR: δ 167.0 (CO), 143.2 (CH), 139.6 (CH), 136.2 (Ph), 129.8 (Ph), 128.7 (Ph), 126.9 (Ph), 126.8 (CH), 119.0 (CH), 61.7 (CH<sub>3</sub>O), 32.3 (CH<sub>3</sub>). MS (ESI) *m*/*z* (%): 218 (M<sup>+</sup>, 100).

(4E,6E)-1,1,1,2,2-Pentafluoro-7-phenylhepta-4,6-dien-3-one (10). To a stirring solution of the Weinreb amide 9 (78 mg, 0.36 mmol) in  $Et_2O(5 \text{ mL})$  at  $-78 \text{ }^{\circ}C$  was added pentafluoroiodoethane (0.7 mL, 1.80 mmol) followed by dropwise addition of a MeLi · LiBr solution 1.6 M in ether (1.2 mL, 1.80 mmol). The reaction mixture was stirred at -78 °C for 3 h. Once the reaction was finished, the reaction mixture was poured into H<sub>2</sub>O and acidified with a 10% solution of KHSO<sub>4</sub>. The layers were separated, and the aqueous layer was extracted with  $Et_2O(3 \times 15 \text{ mL})$ . The combined organic layers were washed with a 5% solution of NaHCO<sub>3</sub> (40 mL) and dried over MgSO<sub>4</sub>. The organic solvent was evaporated in vacuo and the residue was purified by column chromatography, eluting with EtOAc-petroleum ether (40-60 °C), 2/98. Yield 90%; yellow oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  7.74 (1H, dd,  $J_1 = 15.0$  Hz,  $J_2 = 10.6$  Hz, CH), 7.56-7.44 (2H, m, Ph), 7.42-7.32 (3H, m, Ph), 7.25-6.88 (2H, m, CH), 6.65 (1H, d, J = 15.4 Hz, CH). <sup>13</sup>C NMR:  $\delta$  182.1 (t,  $J_{C-C-F} = 25.4$  Hz, CO), 149.8 (CH), 146.7 (CH), 135.3 (Ph), 130.4 (Ph), 129.0 (Ph), 127.9 (Ph), 125.9 (CH), 119.9 (CH), 130.0-107.0 (m, CF<sub>2</sub>, CF<sub>3</sub>). <sup>19</sup>F NMR: δ -4.3 (CF<sub>3</sub>), -46.0 (CF<sub>2</sub>). MS (ESI) m/z (%): 276 (M<sup>-</sup>, 100). Anal.  $(C_{13}H_9F_5O)C, H.$ 

Synthesis of Pentafluoroethyl Ketones. The synthesis of pentafluoroethyl ketones was carried out following the procedure described above for heptafluoropropyl ketones except that pentafluoropropionic anhydride was used instead of heptafluorobutanoic anhydride. The products were purified by flash column chromatography [EtOAc-petroleum ether (bp 40-60 °C), 1/9].

**1,1,1,2,2-Pentafluoro-6-phenoxyhexan-3-one** (12a). Yield 60%; yellowish oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  7.40–7.20 (2H, m, Ph), 7.00–6.83 (3H, m, Ph), 4.02 (2H, t, J = 7 Hz, OCH<sub>2</sub>), 3.02

(2H, t, J = 6.6 Hz, CH<sub>2</sub>CO), 2.30–2.10 (2H, m, CH<sub>2</sub>). <sup>13</sup>C NMR:  $\delta$  194.0 (t,  $J_{C-C-F} = 26.4$  Hz, CO), 158.5 (Ph), 133.4 (Ph), 129.5 (Ph), 121.0 (Ph), 125.0–110.0 (m, CF<sub>3</sub>), 114.4 (Ph), 106.8 (tq,  $J_{C-F2} = 265$  Hz,  $J_{C-CF3} = 38$  Hz, CF<sub>2</sub>), 68.0 (CH<sub>2</sub>O), 34.1 (CH<sub>2</sub>), 22.3 (CH<sub>2</sub>). <sup>19</sup>F NMR:  $\delta$  –4.1 (CF<sub>3</sub>), -45.6 (CF<sub>2</sub>). MS (ESI) m/z (%): 281 [(M – H)<sup>-</sup>, 100]. Anal. (C<sub>12</sub>H<sub>11</sub>F<sub>5</sub>O<sub>2</sub>) C, H.

**5-(6,6,7,7,7-Pentafluoro-5-oxoheptyl)furan-2-carboxaldeyde** (12b). Yield 34%; yellowish oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  9.49 (1H, s, CHO), 7.16 (1H, d, J = 3.8 Hz, arom), 6.26 (1H, d, J = 3.6 Hz, arom), 2.78–2.74 (4H, m, 2 × CH<sub>2</sub>), 1.76–169 (4H, m, 2 × CH<sub>2</sub>). <sup>13</sup>C NMR:  $\delta$  193.9 (t,  $J_{C-C-F}$  = 26.4 Hz, CO), 177.0 (CHO), 162.7 (arom), 151.9 (arom), 123.7 (arom), 117.6 (qt,  $J_{C-F3}$  = 286 Hz,  $J_{C-CF3}$  = 34 Hz, CF<sub>3</sub>), 109.2 (arom), 106.8 (tq,  $J_{C-F2}$  = 265 Hz,  $J_{C-CF3}$  = 38 Hz, CF<sub>2</sub>), 36.9 (CH<sub>2</sub>), 28.1 (CH<sub>2</sub>), 26.4 (CH<sub>2</sub>), 21.7 (CH<sub>2</sub>). <sup>19</sup>F NMR:  $\delta$  –4.0 (CF<sub>3</sub>), –45.5 (CF<sub>2</sub>). MS (ESI) *m*/*z* (%): 299 [(M + H)<sup>+</sup>, 100]. Anal. (C<sub>12</sub>H<sub>11</sub>F<sub>5</sub>O<sub>3</sub>) C, H.

**1,1,2,2-Pentafluoro-7-(4-hexyloxyphenyl)heptan-3-one (12c).** Yield 61%; yellowish oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  7.06 (2H, d, J = 8.4 Hz, Ph), 6.82 (2H, d, J = 8.4 Hz, Ph), 3.93 (2H, t, J = 6.6 Hz, OCH<sub>2</sub>), 2.75 (2H, t, J = 6.6 Hz, CH<sub>2</sub>), 2.57 (2H, t, J = 6.2 Hz, CH<sub>2</sub>), 1.77–1.62 (6H, m,  $3 \times$  CH<sub>2</sub>), 1.44–1.27 (6H, m,  $3 \times$  CH<sub>2</sub>), 0.90 (3H, t, J = 6.8 Hz, CH<sub>3</sub>). <sup>13</sup>C NMR:  $\delta$  194.2 (t,  $J_{C-C-F} = 26.4$  Hz, CO), 157.5 (Ph), 133.4 (Ph), 129.2 (Ph), 117.6 (qt,  $J_{C-F3} = 286$  Hz,  $J_{C-CF2} = 34$  Hz, CF<sub>3</sub>), 114.4 (Ph), 106.8 (tq,  $J_{C-F2} = 265$  Hz,  $J_{C-CF3} = 38$  Hz, CF<sub>2</sub>), 68.0 (CH<sub>2</sub>O), 37.2 (CH<sub>2</sub>), 34.5 (CH<sub>2</sub>), 31.8 (CH<sub>2</sub>), 31.6 (CH<sub>2</sub>), 29.3 (CH<sub>2</sub>), 27.5 (CH<sub>2</sub>), 25.7 (CH<sub>2</sub>), 22.6 (CH<sub>2</sub>), 14.0 (CH<sub>3</sub>). <sup>19</sup>F NMR:  $\delta$  –4.1 (CF<sub>3</sub>), -45.6 (CF<sub>2</sub>). MS (ESI) m/z (%): 379 [(M – H)<sup>-</sup>, 100]. Anal. (C<sub>19</sub>H<sub>25</sub>F<sub>5</sub>O<sub>2</sub>) C, H.

**1,1,1,2,2-Pentafluoro-6-(4-octylphenoxy)hexan-3-one (12f).** Yield 70%; yellowish oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  7.10 (2H, d, J = 8 Hz, Ph), 6.81 (2H, d, J = 8 Hz, Ph), 3.99 (2H, t, J = 6.6 Hz, CH<sub>2</sub>), 3.00 (2H, t, J = 6.6 Hz, CH<sub>2</sub>), 2.57 (2H, t, J = 6.2 Hz, CH<sub>2</sub>), 2.41–2.14 (2H, m, CH<sub>2</sub>), 1.64–1.58 (2H, m, CH<sub>2</sub>), 1.38–1.21 (10H, m, 5 × CH<sub>2</sub>), 0.91 (3H, t, J = 6.8 Hz, CH<sub>3</sub>). <sup>13</sup>C NMR:  $\delta$  194.0 (t,  $J_{C-CF2} = 26$  Hz, CO), 156.6 (Ph), 135.5 (Ph), 129.1 (Ph), 117.8 (qt,  $J_{C-F3} = 287$  Hz,  $J_{C-CF2} = 34$  Hz, CF<sub>3</sub>), 114.4 (Ph), 106.8 (tq,  $J_{C-F2} = 267$  Hz,  $J_{C-CF3} = 38$  Hz, CF<sub>2</sub>), 65.8 (CH<sub>2</sub>O), 35.4 (CH<sub>2</sub>), 34.5 (CH<sub>2</sub>), 31.5 (CH<sub>2</sub>), 30.6 (CH<sub>2</sub>), 29.3 (CH<sub>2</sub>), 25.7 (CH<sub>2</sub>), 22.6 (CH<sub>2</sub>), 21.9 (CH<sub>2</sub>), 14.2 (CH<sub>3</sub>). <sup>19</sup>F NMR:  $\delta$  –4.2 (CF<sub>3</sub>), -45.6 (CF<sub>2</sub>). MS (ESI) *m*/*z* (%): 393 [(M – H)<sup>-</sup>, 100]. Anal. (C<sub>20</sub>H<sub>27</sub>F<sub>5</sub>O<sub>2</sub>) C, H.

**1,1,2,2-Pentafluoro-7-(naphthalen-2-yl)heptan-3-one (12h).** Yield 38%; yellowish oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  7.88–7.28 (7H, m, Ph), 2.83–2.78 (4H, m, 2 × CH<sub>2</sub>), 1.80–1.74 (4H, m, 2 × CH<sub>2</sub>). <sup>13</sup>C NMR:  $\delta$  194.4 (t,  $J_{C-CF2} = 26$  Hz, CO), 139.4 (Ph), 133.9 (Ph), 132.4 (Ph), 128.4 (Ph), 127.9 (Ph), 127.6 (Ph), 127.4 (Ph), 126.7 (Ph), 126.2 (Ph), 125.9 (Ph), 118.1 (qt,  $J_{C-F3} = 287$  Hz,  $J_{C-CF2} = 35$  Hz, CF<sub>3</sub>), 107.2 (tq,  $J_{C-F2} = 265$  Hz,  $J_{C-CF3} = 38$  Hz, CF<sub>2</sub>), 37.4 (CH<sub>2</sub>), 35.9 (CH<sub>2</sub>), 30.5 (CH<sub>2</sub>), 22.2 (CH<sub>2</sub>). <sup>19</sup>F NMR:  $\delta$  –4.1 (CF<sub>3</sub>), -45.5 (CF<sub>2</sub>). MS (ESI) *m*/*z* (%): 329 [(M – H)<sup>-</sup>, 100]. Anal. (C<sub>17</sub>H<sub>15</sub>F<sub>5</sub>O) C, H.

**Synthesis of Trifluoromethyl Ketones.** The synthesis of trifluoromethyl ketones was carried out following the procedure described above for heptafluoropropyl ketones except that trifluoroacetic anhydride was used instead of heptafluorobutanoic anhydride. The products were purified by flash column chromatography [EtOAc-petroleum ether (bp 40–60 °C), 3/7].

**1,1.1-Trifluoro-5-(4-octylphenoxy)pentan-2-one** (**12e**). Yield 32%; yellowish oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  7.10 (2H, d, J = 8 Hz, Ph), 6.80 (2H, d, J = 8 Hz, Ph), 3.99 (2H, t, J = 6.6 Hz, OCH<sub>2</sub>), 2.95 (2H, t, J = 6.6 Hz, CH<sub>2</sub>), 2.54 (2H, t, J = 6.2 Hz, CH<sub>2</sub>), 2.20–2.10 (2H, m, CH<sub>2</sub>), 1.61–1.51 (2H, m, CH<sub>2</sub>), 1.28–1.21 (10H, m,  $5 \times$ CH<sub>2</sub>), 0.88 (3H, t, J = 6.8 Hz, CH<sub>3</sub>). <sup>13</sup>C NMR:  $\delta$  193.9 (t,  $J_{C-CF2} = 26$  Hz, CO), 156.5 (Ph), 135.5 (Ph), 129.3 (Ph), 115.8 (q,  $J_{C-F} = 292$  Hz, CF<sub>3</sub>), 114.2 (Ph), 65.8 (CH<sub>2</sub>O), 35.0 (CH<sub>2</sub>), 33.1 (CH<sub>2</sub>), 31.9 (CH<sub>2</sub>), 31.7 (CH<sub>2</sub>), 31.6 (CH<sub>2</sub>), 31.5 (CH<sub>2</sub>), 29.5 (CH<sub>2</sub>), 22.6 (CH<sub>2</sub>), 22.4 (CH<sub>2</sub>), 14.0

(CH<sub>3</sub>). <sup>19</sup>F NMR:  $\delta$  – 1.5 (s, CF<sub>3</sub>). MS (ESI) *m*/*z* (%): 343 [(M – H)<sup>-</sup>, 100]. Anal. (C<sub>19</sub>H<sub>27</sub>F<sub>3</sub>O<sub>2</sub>) C, H.

**1,1.1-Trifluoro-6-(naphthalen-2-yl)hexan-2-one** (**12g**). Yield 39%; yellowish oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  7.81–7.29 (7H, m, Ph), 2.81–2.73 (4H, m, 2 × CH<sub>2</sub>), 1.79–1.73 (4H, m, 2 × CH<sub>2</sub>). <sup>13</sup>C NMR:  $\delta$  194.4 (t,  $J_{C-C-F} = 26$  Hz, CO), 139.4 (Ph), 133.9 (Ph), 132.3 (Ph), 128.4 (Ph), 127.9 (Ph), 127.7 (Ph) 127.4 (Ph), 126.7 (Ph), 126.2 (Ph), 125.9 (Ph), 115.8 (q,  $J_{C-F} = 292$  Hz, CF<sub>3</sub>), 36.2 (CH<sub>2</sub>), 35.6 (CH<sub>2</sub>), 30.3 (CH<sub>2</sub>), 22.0 (CH<sub>2</sub>). <sup>19</sup>F NMR:  $\delta$  –1.5 (s, CF<sub>3</sub>). MS (ESI) m/z (%): 279 [(M – H)<sup>-</sup>, 100]. Anal. (C<sub>16</sub>H<sub>15</sub>F<sub>3</sub>O) C, H.

5-(Furan-2-yl)pentanoic Acid (11b).<sup>46</sup> A suspension of aldehyde 13 (0.096 g, 1 mmol), triethyl 4-phosphonocrotonate (0.37 g, 1.5 mmol), lithium hydroxide (0.036 g, 1.5 mmol), and molecular sieves (beads, 4-8 mesh, 1.5 g/mmol aldehyde) in dry tetrahydrofuran (10 mL) was refluxed under argon for 24 h. The reaction mixture was then cooled to room temperature and filtered through a thin pad of Celite and the solvent evaporated under reduced pressure. The residual oil was purified by chromatography on silica gel, eluting with ether-petroleum ether (bp 40-60 °C), 1/9. A mixture of the unsaturated ester (135 mg, 0.7 mmol) in dry 1,4-dioxane (7 mL) and 10% palladium on activated carbon (0.07 g) was hydrogenated for 12 h under atmospheric conditions. After filtration through a pad of Celite, the solvent was removed in vacuo to give the saturated compound. The solution of the saturated ester in methanol (1.4 mL) was treated with 1 N sodium hydroxide (1 mL, 1 mmol). The mixture was stirred at room temperature for 12 h, acidified with 1 N HCl, and extracted with EtOAc ( $3 \times 10$  mL). The solvent was removed in vacum to afford the saturated acid. Yield 66%; white solid; mp 40-41 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  10.00 (1H, br, COOH), 7.29–7.27 (1H, m, arom), 6.27–6.25 (1H, m, arom), 6.00-5.97 (1H, m, arom), 2.64 (2H, t, J = 6.4 Hz, CH<sub>2</sub>), 2.36  $(2H, t, J = 6.0 \text{ Hz}, \text{CH}_2), 1.73 - 1.63 (4H, m, 2 \times \text{CH}_2).$ <sup>13</sup>C NMR: δ 178.4 (CO), 155.5 (arom), 140.9 (arom), 110.0 (arom), 104.9 (arom), 33.8 (CH<sub>2</sub>), 27.6 (CH<sub>2</sub>), 27.4 (CH<sub>2</sub>), 24.1 (CH<sub>2</sub>).

(2*E*,4*E*)-5-Phenylpenta-2,4-dienoic Acid (8).<sup>47</sup> Benzaldehyde was treated with triethyl 4-phosphonocrotonate, and the resulting ester was saponified as described above. Yield 76%; white solid; mp 165–166 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  7.58–7.22 (6H, m, Ph, CH), 7.05–6.90 (2H, m, CH), 6.00 (1H, d, *J* = 15 Hz, CH). <sup>13</sup>C NMR:  $\delta$  169.3 (CO), 145.5 (CH), 140.6 (CH), 136.4 (Ph), 128.9 (Ph), 128.4 (Ph), 127.1 (Ph), 126.2 (CH), 121.1 (CH).

4-(4-Octylphenoxy)butyric Acid Ethyl Ester (15). A mixture of p-octylphenol (206 mg, 1 mmol), K<sub>2</sub>CO<sub>3</sub> (415 mg, 3 mmol), and ethyl 4-bromobutyrate (215 mg, 1.1 mmol) in acetone (7.6 mL) was refluxed overnight. The reaction mixture was then cooled to room temperature and the soslvent evaporated under reduced pressure. The residual oil was purified by flash column chromatography on silica gel, eluting with EtOAc-petroleum ether (bp 40–60 °C), 1/9. Yield 71%; colorless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$ 7.07 (2H, d, J = 8.8 Hz, Ph), 6.81 (2H, d, J = 8.8 Hz, Ph), 4.17  $(2H, q, J = 7 Hz, OCH_2CH_3), 3.92 (2H, t, J = 6.6 Hz, OCH_2),$ 2.60-2.45 (4H, m, 2 × CH<sub>2</sub>), 2.18-2.05 (2H, m, CH<sub>2</sub>CH<sub>2</sub>COO), 1.65-1.42 (2H, m, CH<sub>2</sub>), 1.38-1.21 (13H, br,  $5 \times$  CH<sub>2</sub>, CH<sub>3</sub>), 0.90 (3H, t, J = 6.8 Hz, CH<sub>3</sub>). <sup>13</sup>C NMR:  $\delta$  173.4 (CO), 157.1 (Ph), 135.3 (Ph), 129.4 (Ph), 114.4 (Ph), 66.9 (CH<sub>2</sub>O), 60.5 (OCH<sub>2</sub>CH<sub>3</sub>), 35.3 (CH<sub>2</sub>), 32.1 (CH<sub>2</sub>), 32.0 (CH<sub>2</sub>), 31.5 (CH<sub>2</sub>), 31.0 (CH<sub>2</sub>), 29.7 (CH<sub>2</sub>), 29.5 (CH<sub>2</sub>), 24.9 (CH<sub>2</sub>), 22.9 (CH<sub>2</sub>), 14.5 (CH<sub>3</sub>), 14.3 (CH<sub>3</sub>). Anal. (C<sub>20</sub>H<sub>32</sub>O<sub>3</sub>) C, H.

α-Fluorination of α-Hydroxy Methyl Esters. Compound 16a or 16b (1 mmol) was added to a solution of DAST (0.14 mL, 1 mmol) in dry dichloromethane (0.2 mL) at -78 °C. After being stirred for 2 h at -78 °C and another 3 h at room temperature, the reaction mixture was quenched with saturated aqueous NaHCO<sub>3</sub> (2.5 mL). The organic phase was then washed with brine and dried (Na<sub>2</sub>SO<sub>4</sub>). The solvent was evaporated under reduced pressure, and the residual oil was purified by flash column chromatography on silica gel, eluting with EtOAc– petroleum ether (bp 40–60 °C), 3/7.

**Methyl 5-Phenyl-2-fluoropentanoate** (17a). Yield 60%; yellowish oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>): δ 7.35–7.02 (5H, m, Ph), 4.98 (1H, dt,  $J_{H-F} = 48.2$  Hz,  $J_{H-H} = 6.2$  Hz, CHF), 3.78 (3H, s, CH<sub>3</sub>O), 2.67 (2H, t, J = 6.6 Hz, PhCH<sub>2</sub>), 2.04–1.78 (4H, m, 2 × CH<sub>2</sub>). <sup>13</sup>C NMR: δ 170.2 (d,  $J_{C-CF} = 23.5$  Hz, CO), 141.3 (Ph), 128.4 (Ph), 128.3 (Ph), 125.9 (Ph), 88.8 (d,  $J_{C-F} = 183.3$  Hz, CHF), 52.1 (CH<sub>3</sub>), 35.1 (CH<sub>2</sub>), 31.8 (d,  $J_{C-CF} = 20.8$  Hz, CH<sub>2</sub>CHF), 25.9 (CH<sub>2</sub>). <sup>19</sup>F NMR: δ –114.1 (CF). MS (ESI) m/z (%): 212 [(M + H)<sup>+</sup>,100]. Anal. (C<sub>12</sub>H<sub>15</sub>FO<sub>2</sub>) C, H.

Methyl 6-Phenyl-2-fluorohexanoate (17b). Yield 52%; colorless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>): δ 7.35–7.16 (5H, m, Ph), 4.86 (1H, dt,  $J_{H-F} = 48.2$  Hz,  $J_{H-H} = 6.2$  Hz, CHF), 3.78 (3H, s, CH<sub>3</sub>O), 2.64 (2H, t, J = 6.6 Hz, PhCH<sub>2</sub>), 2.10–1.46 (6H, m, 3 × CH<sub>2</sub>). <sup>13</sup>C NMR: δ 170.2 (d,  $J_{C-CF} = 23.5$  Hz, CO), 141.9 (Ph), 128.2 (Ph), 128.1 (Ph), 125.6 (Ph), 88.8 (d,  $J_{C-F} = 183.3$  Hz, CHF), 52.0 (CH<sub>3</sub>), 35.4 (CH<sub>2</sub>), 32.0 (d,  $J_{C-CF} = 20.8$  Hz, CH<sub>2</sub>CHF), 30.7 (CH<sub>2</sub>), 23.8 (d,  $J_{C-C-CF} = 3.0$  Hz CH<sub>2</sub>). <sup>19</sup>F NMR: δ –114.1 (CF). Anal. (C<sub>13</sub>H<sub>17</sub>FO<sub>2</sub>) C, H.

Synthesis of 1,1,1,3-Tetrafluoro Ketones. Method A. A solution of compound 17a or 17b (1 mmol) and trifluoromethyltrimethylsilane (283  $\mu$ L, 1.92 mmol) in ethylene glycol dimethyl ether (0.92 mL) at 0 °C was treated with cesium fluoride (4 mg). After being stirred for 30 min at 0 °C and another 18 h at 25 °C, the reaction mixture was treated with concentrated HCl (1 mL). After being stirred for another 18 h at 25 °C, the reaction mixture was diluted with EtOAc (10 mL). The organic phase was then washed with brine and dried (Na<sub>2</sub>SO<sub>4</sub>). The solvent was evaporated under reduced pressure, and the residual oil was purified by flash column chromatography on silica gel, eluting with EtOAc–petroleum ether (bp 40–60 °C), 3/7.

Method B. A solution of compound 17a or 17b (1 mmol) and trifluoromethyltrimethylsilane (1 mL, 6.9 mmol) in toluene (9 mL) at -78 °C was treated with 1.0 M TBAF (45  $\mu$ L) in THF. After the mixture was stirred for 2 h at 25 °C the intermediate silyl ether was formed and then it was treated with 1.0 M TBAF (1.2 mmol) in THF and with glacial acetic acid (3 drops). The reaction mixture was stirred for 30 min at 25 °C and diluted with EtOAc (10 mL). The organic phase was washed first with saturated solution of K<sub>2</sub>CO<sub>3</sub> and then with brine and dried (Na<sub>2</sub>SO<sub>4</sub>). The solvent was evaporated under reduced pressure, and the residual oil was purified by flash column chromatography on silica gel, eluting with EtOAc–petroleum ether (bp 40–60 °C), 3/7.

**1,1,3-Tetrafluoro-6-phenylhexan-2-one (in Equilibrium with 1,1,3-Tetrafluoro-6-phenyl-2,2-***gem*-hexanodiol) (18a). Yield 47% (method A), 93% (method B); yellowish oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  7.34–7.15 (5H, m, Ph), 5.23 (1/4H, dm, *J*<sub>H-F</sub> = 48.2 Hz, CH), 4.65 (3/4H, dm, *J*<sub>H-F</sub> = 48.2 Hz, CH), 3.74 (<sup>3</sup>/<sub>4</sub>H, s, OH), 3.49 (<sup>3</sup>/<sub>4</sub>H, s, OH), 2.68 (2H, t, *J* = 6.2 Hz, CH<sub>2</sub>), 1.90–1.10 (4H, m, 2 × CH<sub>2</sub>). <sup>13</sup>C NMR:  $\delta$  141.6 (Ph), 128.4 (Ph), 126.1 (Ph), 125.9 (Ph), 122.6 (q, *J*<sub>C-F3</sub> = 286 Hz, CF<sub>3</sub>), 92.4 (d, *J*<sub>C-F</sub> = 175 Hz, CF), 92.2 [m, C(OH)<sub>2</sub>], 35.4 (CH<sub>2</sub>), 31.8 (d, *J*<sub>C-F</sub> = 20 Hz, CH<sub>2</sub>), 27.6 (d, *J*<sub>C-F</sub> = 20 Hz, CH<sub>2</sub>). <sup>19</sup>F NMR:  $\delta$  1.6 (CF<sub>3</sub>), -5.3 (CF<sub>3</sub>), -120.9 (CHF). MS (ESI) *m*/*z* (%): 247 [(M – H)<sup>-</sup>, 100].

**1,1,3-Tetrafluoro-7-phenylheptan-2-one (in Equilibrium with 1,1,1,3-Tetrafluoro-7-phenyl-2,2**-*gem*-heptanodiol) (18b). Yield 45% (method A), 94% (method B); yellowish oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  7.32–7.15 (5H, m, Ph), 5.20 (1/6H, dm,  $J_{H-F} = 48.2$ Hz, CH), 4.63 (5/6H, dm,  $J_{H-F} = 48.2$  Hz, CH), 2.64 (2H, t, J =7.4 Hz, CH<sub>2</sub>), 1.84–1.80 (2H, m, CH<sub>2</sub>), 1.74–1.42 (4H, m, 2 × CH<sub>2</sub>). <sup>13</sup>C NMR:  $\delta$  142.1 (Ph), 128.3 (Ph), 125.8 (Ph), 125.3 (Ph), 122.6 (q,  $J_{C-F3} = 286$  Hz, CF<sub>3</sub>), 92.3 (d,  $J_{C-F} = 175$  Hz, CF), 92.2 [m, C(OH)<sub>2</sub>], 35.6 (CH<sub>2</sub>), 31.0 (CH<sub>2</sub>), 27.8 (d,  $J_{C-F} = 20$ Hz, CH<sub>2</sub>), 24.6 (d,  $J_{C-C-F} = 2.6$  Hz, CH<sub>2</sub>). <sup>19</sup>F NMR:  $\delta$  1.6 (CF<sub>3</sub>), -5.3 (CF<sub>3</sub>), -120.8 (CHF). MS (ESI) *m*/*z* (%): 261 [(M – H)<sup>-</sup>, 100].

In Vitro PLA<sub>2</sub> Assays. Phospholipase  $A_2$  activity was determined using the previously described modified Dole assay<sup>28</sup> with buffer and substrate conditions optimized for each enzyme

as described previously.<sup>29,31,34</sup> The specific assay conditions employed for the studies reported in this manuscript for each enzyme are as follows: (i) GIVA cPLA<sub>2</sub> substrate mixed-micelles were composed of 400  $\mu$ M Triton X-100, 97  $\mu$ M PAPC, 1.8  $\mu$ M <sup>14</sup>C-labeled PAPC, and 3  $\mu$ M PIP<sub>2</sub> in buffer containing 100 mM HEPES, pH 7.5, 90  $\mu$ M CaCl<sub>2</sub>, 2 mM DTT, and 0.1 mg/mL BSA; (ii) GVI iPLA<sub>2</sub> substrate mixed-micelles were composed of 400  $\mu$ M Triton X-100, 98.3  $\mu$ M PAPC, and 1.7  $\mu$ M <sup>14</sup>C-labeled PAPC in buffer containing 100 mM HEPES, pH 7.5, 2 mM ATP, and 4 mM DTT; (iii) GV sPLA<sub>2</sub> substrate mixed-micelles were composed of 400  $\mu$ M Triton X-100, 99  $\mu$ M DPPC, and 1.5  $\mu$ M <sup>14</sup>C-labeled DPPC in buffer containing 50 mM Tris, pH 8.0, and 5 mM CaCl<sub>2</sub>.

In Vitro PLA<sub>2</sub> Inhibition Studies. Initial screening of compounds at 0.091 mol fraction inhibitor in mixed micelles was carried out. Compounds displaying 25% or less inhibition of the assays were considered to have no inhibitory affect (designated N.D.). We report average percent inhibition (and standard error, n = 3) for compounds displaying less than 90% enzyme inhibition. If the percent inhibition was greater than 90%, we determined its  $X_I(50)$  by plotting percent inhibition vs inhibitor mole fraction (typically seven concentrations between 0.00091 and 0.091 mol fraction). Inhibition curves were modeled in Graphpad Prism 5.0 using nonlinear regression targeted at symmetrical sigmoidal curves based on plots of % inhibition versus log(inhibitor concentration) to calculate the reported  $X_I(50)$  and associated error values.

Acknowledgment. This work was supported by the European Social Fund and National Resources (G.K.) and by NIH Grant GM 20,501 (E.A.D.).

## References

- Burke, J. E.; Dennis, E. A. Phospholipase A<sub>2</sub> Biochemistry. *Cardiovasc. Drugs Ther.* 2009, 23, 45–59.
- (2) Schaloske, R. H.; Dennis, E. A. The phospholipase A(2) superfamily and its group numbering system. *Biochim. Biophys. Acta* 2006, 1761, 1246–1259.
- (3) Burke, J. E.; Dennis, E. A. Phospholipase A<sub>2</sub> structure/function, mechanism, and signaling. J. Lipid Res. 2009, 50, S237–42.
- (4) Leslie, C. C. Regulation of the specific release of arachidonic acid by cytosolic phospholipase A2. *Prostaglandins, Leukotrienes Essent. Fatty Acids* 2004, 70, 373–376.
- (5) Mounier, C. M.; Ghomashchi, F.; Lindsay, M. R.; James, S.; Singer, A. G.; Parton, R. G.; Gelb, M. H. Arachidonic acid release from mammalian cells transfected with human groups IIA and X secreted phospholipase A<sub>2</sub> occurs predominantly during the secretory process and with the involvement of cytosolic phospholipase A<sub>2</sub>-α. J. Biol. Chem. **2004**, 279, 25024–25038.
- (6) Satake, Y.; Diaz, B. L.; Balestrieri, B.; Lam, B. K.; Kanaoka, Y.; Grusby, M. J.; Arm, J. P. Role of group V phospholipase A<sub>2</sub> in zymosan-induced eicosanoid generation and vascular permeability revealed by targeted gene disruption. J. Biol. Chem. 2004, 279, 16488–16494.
- (7) Shirai, Y.; Balsinde, J.; Dennis, E. A. Localization and functional interrelationships among cytosolic group IV, secreted group V, and Ca<sup>2+</sup>-independent froup VI phospholipase A<sub>2</sub>s in P388D1 macrophages using GFP/RFP constructs. *Biochim. Biophys. Acta* 2005, *1735*, 119–129.
- (8) Larsson, P. K.; Claesson, H.-E.; Kennedy, B. P. Multiple splice variants of the human calcium-independent phospholipase A<sub>2</sub> and their effect on enzyme activity. *J. Biol. Chem.* **1998**, *273*, 207–214.
- (9) Balsinde, J.; Bianco, I. D.; Ackermann, E. J.; Conde-Frieboes, K.; Dennis, E. A. Inhibition of calcium-independent phospholipase A<sub>2</sub> prevents arachidonic acid incorporation and phospholipid remodeling in P388D1 macrophages. *Proc. Natl. Acad. Sci. U.S.A.* 1995, 92, 8527–8531.
- (10) Balsinde, J.; Balboa, M. A.; Dennis, E. A. Antisense inhibition of group VI Ca<sup>2+</sup>-independent phospholipase A<sub>2</sub> blocks phospholipid fatty acid remodeling in murine P388D1 macrophages. *J. Biol. Chem.* **1997**, *272*, 29317–29321.
- (11) Balsinde, J.; Dennis, E. A. Function and inhibition of intracellular calcium-independent phospholipase A<sub>2</sub>. J. Biol. Chem. 1997, 272, 16069–16072.

- (12) Ramanadham, S.; Hsu, F. F.; Bohrer, A.; Ma, Z.; Turk, J. Studies of the role of group VI phospholipase A2 in fatty acid incorporation, phospholipid remodeling, lysophosphatidylcholine generation, and secretagogue-induced arachidonic acid release in pancreatic islets and insulinoma cells. J. Biol. Chem. 1999, 274, 13915-13927.
- (13) Birbes, H.; Drevet, S.; Pageaux, J. F.; Lagarde, M.; Laugier, C. Involvement of calcium-independent phospholipase A2 in uterine stromal cell phospholipid remodelling. Eur. J. Biochem. 2000, 267, 7118–7127.
- (14) Ma, Z.; Bohrer, A.; Wohltmann, M.; Ramanadham, S.; Hsu, F. F.; Turk, J. Studies of phospholipid metabolism, proliferation, and secretion of stably transfected insulinoma cells that overexpress group VIA phospholipase A(2). Lipids 2001, 36, 689-700.
- (15) Ma, Z.; Ramanadham, S.; Wohltmann, M.; Bohrer, A.; Hsu, F. F.; Turk, J. Studies of insulin secretory responses and of arachidonic acid incorporation into phospholipids of stably transfected insulinoma cells that overexpress group VIA phospholipase  $A_2$  (iPLA<sub>2</sub> $\beta$ ) indicate a signaling rather than a housekeeping role for iPLA<sub>2</sub> $\beta$ . J. Biol. Chem. 2001, 276, 13198-13208.
- (16) Balsinde, J.; Balboa, M. A. Cellular regulation and proposed biological functions of group VIA calcium-independent phospholipase A(2) in activated cells. Cell. Signalling 2005, 17, 1052-1062.
- (17) Balsinde, J.; Perez, R.; Balboa, M. A. Calcium-independent phospholipase A2 and apoptosis. Biochim. Biophys. Acta 2006, 1761, 1344-1350.
- (18) Hooks, S. B.; Cummings, B. S. Role of Ca<sup>2+</sup>-independent phospholipase A2 in cell growth and signaling. Biochem. Pharmacol. 2008, 76, 1059–1067
- (19) Wilkins, W. P.; Barbour, S. E. Group VI phospholipase A2: homeostatic phospholipases with significant potential as targets for novel therapeutics. Curr. Drug Targets 2008, 9, 683-697.
- (20) Jenkins, C. M.; Cedars, A.; Gross, R. W. Eicosanoid signalling pathways in the heart. Cardiovasc. Res. 2009, 82, 240-249.
- (21) Tang, J.; Kriz, R. W.; Wolfman, N.; Shaffer, M.; Seehra, J.; Jones, S. S. A novel cytosolic calcium-independent phospholipase A<sub>2</sub> contains eight ankyrin motifs. J. Biol. Chem. 1997, 272, 8567-8575.
- (22) Magrioti, V.; Kokotos, G. Synthetic inhibitors of group IVA and group VIA phospholipase A2. Anti-Inflammatory Anti-Allergy Agents Med. Chem. 2006, 5, 189–203.
- Street, I. P.; Lin, H. K.; Laliberte, F.; Ghomashchi, F.; Wang, Z.; (23)Perrier, H.; Tremblay, N. M.; Huang, Z.; Weech, P. K.; Gelb, M. H. Slow- and tight-binding inhibitors of the 85-kDa human phospholipase A2. Biochemistry 1993, 32, 5935-5940.
- (24) Ackermann, E. J.; Conde-Frieboes, K.; Dennis, E. A. Inhibition of macrophage Ca<sup>2+</sup>-independent phospholipase A<sub>2</sub> by bromoenol lactone and trifluoromethyl ketones. J. Biol. Chem. 1995, 270, 445-450
- (25) Lio, Y. C.; Reynolds, L. J.; Balsinde, J.; Dennis, E. A. Irreversible inhibition of Ca<sup>2+</sup>-independent phospholipase A<sub>2</sub> by methyl arachidonyl fluorophosphonate. Biochim. Biophys. Acta 1996, 1302, 55-60.
- (26) Balsinde, J.; Dennis, E. A. Distinct roles in signal transduction for each of the phospholipase A2 enzymes present in P388D1 macrophages. J. Biol. Chem. 1996, 271, 6758-6765.
- Song, H.; Ramanadham, S.; Bao, S.; Hsu, F.-F.; Turk, J. A (27)bromoenol lactone suicide substrate inactivates group VIA phospholipase A2 by generating a diffusible bromomethyl keto acid that alkylates cysteine thiols. Biochemistry 2006, 45, 1061-1073.
- (28) Kokotos, G.; Kotsovolou, S.; Six, D. A.; Constantinou-Kokotou, V.; Beltzner, C. C.; Dennis, E. A. Novel 2-oxoamide inhibitors of human group IVA phospholipase A2. J. Med. Chem. 2002, 45, 2891-2893.
- (29) Kokotos, G.; Six, D. A.; Loukas, V.; Smith, T.; Constantinou-Kokotou, V.; Hadjipavlou-Litina, D.; Kotsovolou, S.; Chiou, A.; Beltzner, C. C.; Dennis, E. A. Inhibition of group IVA cytosolic phospholipase  $A_2$  by novel 2-oxoamides in vitro, in cells and in vivo. J. Med. Chem. 2004, 47, 3615–3628.
- (30) Stephens, D.; Barbayianni, E.; Constantinou-Kokotou, V.; Peristeraki, A.; Six, D. A.; Cooper, J.; Harkewicz, R.; Deems, R. A.; Dennis, E. A.; Kokotos, G. Differential inhibition of group

IVA and group VIA phospholipases A(2) by 2-oxoamides. J. Med. Chem. 2006, 49, 2821-2828.

- (31) Six, D. A.; Barbayianni, E.; Loukas, V.; Constantinou-Kokotou, V.; Hadjipavlou-Litina, D.; Stephens, D.; Wong, A. C.; Magrioti, V.; Moutevelis-Minakakis, P.; Baker, S.; Dennis, E. A.; Kokotos, G. Structure-activity relationship of 2-oxoamide inhibition of group IVA cytosolic phospholipase A<sub>2</sub> and group V secreted phopholipase A<sub>2</sub>. J. Med. Chem. 2007, 50, 4222–4235.
  (32) Antonopoulou, G.; Barbayianni, E.; Magrioti, V.; Cotton, N.;
- Stephens, D.; Constantinou-Kokotou, V.; Dennis, E. A.; Kokotos, G. Structure-activity relationships of natural and non-natural amino acid-based amide and 2-oxoamide inhibitors of human phospholipase A2 enzymes. Bioorg. Med. Chem. 2008, 16, 10257-10269.
- (33) Burke, J. E.; Babakhani, A.; Gorfe, A. A.; Kokotos, G.; Li, S.; Woods, V. L.; McCammon, J. A.; Dennis, E. A. Location of inhibitors bound to group IVA phospholipase A2 determined by molecular dynamics and deuterium exchange mass spectrometry. J. Am. Chem. Soc. 2009, 131, 8083-8091.
- (34) Barbayianni, E.; Stephens, D.; Grkovich, A.; Magrioti, V.; Hsu, Y.-H.; Dolatzas, P.; Kalogiannidis, D.; Dennis, E. A.; Kokotos, G. 2-Oxoamide inhibitors of phospholipase A2 activity and cellular arachidonate release based on dipeptides and pseudodipeptides. Bioorg. Med. Chem. **2009**, 17, 4833–4843.
- (35) David, S.; Kalyvas, A.; Lopez, R.; Kokotos, G.; Constantinou-Kokotou, V.; Baskakis, C.; Kokotos, C. G.; Stephens, D.; Dennis E. A. Perfluoroketone Compounds and Uses Thereof. WO 2008122119 A1, Oct 16, 2008
- (36) Baskakis, C.; Magrioti, V.; Cotton, N.; Stephens, D.; Constantinou-Kokotou, V.; Dennis, E. A.; Kokotos, G. Synthesis of polyfluoro ketones for selective inhibition of human phospholipase A2 enzymes. J. Med. Chem. 2008, 51, 8027-8037.
- (37) Lopez-Vales, R.; Navarro, X.; Shimizu, T.; Baskakis, C.; Kokotos, G.; Constantinou-Kokotou, V.; Stephens, D.; Dennis, E. A.; David, S. Intracellular phospholipase A2 group IVA and group VIA play important roles in Wallerian degeneration and axon regeneration after peripheral nerve injury. *Brain* **2008**, *131*, 2620–2631. (38) Kalyvas, A.; Baskakis, C.; Magrioti, V.; Constantinou-Kokotou,
- V.; Stephens, D.; Lopez-Vales, R.; Lu, J.-Q.; Yong, V. W.; Dennis, E. A.; Kokotos, G.; David, S. Differing roles for members of the phospholipase A2 superfamily in experimental autoimmune encephalomyelitis. Brain 2009, 132, 1221-1235.
- (39) Takacs, J. M.; Jaber, M. R.; Clement, F. C.; Walters, C. A useful procedure for the preparation of (E,E)-2,4-dienoates: lithium 4-phosphonocrotonate. hydroxide-promoted dienylation by J. Org. Chem. 1998, 63, 6757-6760.
- (40) Kokotos, C. G.; Baskakis, C.; Kokotos, G. Synthesis of medicinally interesting polyfluoro ketones via perfluoroalkyl lithium reagents. J. Org. Chem. 2008, 73, 8623-8626.
- (41)Müller, K.; Faeh, C.; Diederich, F. Fluorine in pharmaceuticals: looking beyond intuition. Science 2007, 317, 1881-1886
- Bohm, H.-J.; Banner, D.; Bendels, S.; Kansy, M.; Kuhn, B.; (42)Muller, K.; Obst-Sander, U.; Stahl, M. Fluorine in medicinal chemistry. ChemBioChem 2004, 5, 637-643.
- Lachapelle, A.; St-Jacques, M. Conformational analysis of 3-substituted-2,3,4,5-tetrahydro-1-benzoxepin by <sup>1</sup>H and <sup>13</sup>C (43)nuclear magnetic resonance. *Can. J. Chem.* **1987**, *65*, 2575–2594. (44) Huisgen, R.; Rietz, U. Darstellung und cyclisierung d
- der a-[naphthyl-(2)]-fettsauren. Chem. Ber. 1957, 90, 2768-2777
- (45) Blackburn, L.; Kanno, H.; Taylor, R. J. K. In situ alcohol oxidation-Wittig N-methoxy-N-methylreactions using 2-(triphenylphosphoranylidine)acetamide: application to the synthesis of a novel analogue of 5-oxo-eicosatetraenoic acid. Tetrahedron Lett. 2003, 44, 115-118.
- (46) Crabbe, P.; Depres, J. P. Synthesis and properties of 5-bromocyclohepta[b]furan-4-one. J. Chem. Soc., Perkin Trans. 1 1980, 2081-2083
- (47) Dockendorff, C.; Sahli, S.; Olsen, M.; Milhau, L.; Lautens, M. Synthesis of dihydronaphthalenes via aryne Diels-Alder reactions: scope and diastereoselectivity. J. Am. Chem. Soc. 2005, 127, 15028–15029.